การทำเหมืองข้อมูลเว็บ (Web Mining)
การทําเหมืองข้อมูลเว็บคือการใช้เทคนิคการทําเหมืองข้อมูลเพื่อค้นหาและสกัดข้อมูลและสารสนเทศจากเอกสารเว็บและบริการบนเว็บโดยอัตโนมัติ
เพื่อนําความรู้ที่ได้มาแก้ปัญหาที่ต้องการทั้งทางตรงและทางอ้อม
นอกจากนี้ยังได้แบ่งประเภทของการทําเหมืองข้อมูลเว็บโดยพิจารณาจากข้อมูลที่นํามาวิเคราะห์ออกเป็น
3 ประเภท คือ Web Content Mining, Web Structure
Mining และ Web Usage Mining
Web Content Mining เป็นการค้นหาข้อมูลที่มีประโยชน์จากข้อมูลที่อยู่ภายในเว็บ
เช่น ข้อความ รูปภาพ เป็นต้น โดย Web Content Mining สามารถแบ่งออกเป็น
2 ประเภทตามมุมมองคือ มุมมองทางด้านการสืบค้นสารนิเทศ (Information
Retrieval) และมุมมองทางด้านฐานข้อมูล (Database) สําหรับเป้าหมายของ Web Content Mining จากมุมมองของการสืบค้นสารนิเทศคือการทําเหมืองข้อมูลเว็บเพื่อปรับปรุงการหาข้อมูลหรือกรองข้อมูลให้ผู้ใช้โดยพิจารณาจากข้อมูลที่ผู้ใช้อ้างอิงหรือร้องขอ
ในขณะที่เป้าหมายของ Web Content Mining ในมุมมองของฐานข้อมูลส่วนใหญ่พยายามจําลองข้อมูลบนเว็บและรวมข้อมูลนั้น
เพื่อให้การสอบถามทํางานดีขึ้นมากกว่าการใช้คําหลักเป็นตัวค้นหาเพียงอย่างเดียว
Web Structure Mining เป็นวิธีการที่พยายามค้นหารูปแบบโครงสร้างการเชื่อมโยงที่สําคัญและซ่อนอยู่ในเว็บ
ซึ่งรูปแบบนี้จะขึ้นอยู่กับรูปแบบการเชื่อมโยงเอกสารภายในเว็บ
โดยนํารูปแบบที่ได้มาใช้เพื่อจัดกลุ่มเว็บเพจและใช้สร้างข้อมูลสารสนเทศที่เป็นประโยชน์
เช่น นํามาใช้ในการปรับโครงสร้างของเว็บให้สามารถให้บริการผู้ใช้ได้อย่างรวดเร็ว
Web Usage Mining เป็นวิธีการที่พยายามค้นหาความหมายของข้อมูลที่สร้างจากช่วงการทํางานหนึ่งของผู้ใช้หรือสร้างจากพฤติกรรมของผู้ใช้เรียกอีกชื่อหนึ่งว่า
Web Log Mining โดยในขณะที่ Web Content Mining และ Web Structure Mining ใช้ประโยชน์จากข้อมูลจริง
หรือข้อมูลพื้นฐานบนเว็บแต่ Web Usage Mining ทําการค้นหาความรู้จากข้อมูลการติดต่อสื่อสารระหว่างกันของผู้ใช้ที่ติดต่อกับเว็บ
โดย Web Usage Mining ทําการรวบรวมข้อมูลจากบันทึกในการดําเนินการต่างๆ
เช่น บันทึกการใช้งานของ Proxy (Proxy Server Log) ข้อมูลการลงทะเบียน
(Registration Data) หรือข้อมูลอื่นอันเป็นผลจากการทํางานร่วมกันมาใช้วิเคราะห์
ดังนั้น Web Usage Mining จึงเป็นวิธีการทํางานที่เน้นใช้เทคนิคที่สามารถทํานายพฤติกรรมของผู้ใช้ในขณะที่ผู้ใช้ทํางานกับเว็บ
กระบวนการทํางานของ Web Usage Mining สามารถแบ่งออกเป็น 2
วิธีคือ
1. ทําการจับคู่ข้อมูลการใช้งานของเครื่องให้บริการเว็บให้อยู่ในรูปของตารางความสัมพันธ์
ก่อนที่นําข้อมูลนี้มาปรับใช้กับเทคนิคการทําเหมืองข้อมูลการใช้เว็บ
2. ใช้ประโยชน์จากข้อมูลในบันทึกการใช้งานโดยตรงซึ่งจะใช้เทคนิคการเตรียมข้อมูล
(Preprocessing) เพื่อเตรียมข้อมูลก่อนหาความสัมพันธ์ (Pattern
Discovery) และวิเคราะห์รูปแบบ (Pattern Analysis)
ไม่มีความคิดเห็น:
แสดงความคิดเห็น